京都グリーンラボ・2023年度研究成果報告会

ペロブスカイト系材料による マイクロLEDディスプレイ

電気電子工学系 西中浩之 山下兼一

ディスプレイ

マイクロLEDの課題

マイクロLEDに向けた研究方針

電気泳動を利用した電極固定技術

簡易な電極固定技術の提案

ペロブスカイト系材料によるマイクロロッド

マイクロサイズの単結晶2

1. L. Protesescu et al. Nano Lett. 15 (2015) 3692. 2. Li et al. APL, 118 (2021) 071103

ペロブスカイト系材料(CsCul系)

Pbレスのペロブスカイト材料

有毒なPbレスのペロブスカイト材料として、青色発光する $Cs_3Cu_2l_5$ と黄色発光する $CsCu_2l_3$ をマイクロロッド材料として選定した

電気泳動によるマイクロLEDの固定化

・マイクロLEDディスプレイでは作製した小さなLEDを電極間 に固定する技術が課題となっている

→液体中での電気泳動を用いてマイクロLEDを固定する

ペロブスカイト材料の結晶作製手法

ペロブスカイト系におけしる単結晶形成手法

貧溶媒法(Anti-solvent vapor-assisted crystallization methods) 逆温度結晶化法(Inverse Temperature crystallization methods)

貧溶媒法 溶解度の低い溶剤の雰囲気下に溶液を設置し単結晶を形成

貧溶媒の例:ジクロロメタン*2、メタノール*3など

*1 D. SHI *ET AL., SCIENCE*, 347, 519-522 (2015) *2 S. WANG *ET AL., ADV. OPTICAL MATER.*, 5 1700023 (2017) *3 T. JUN *ET AL., ADV. MATER.*, 30, 1804547 (2018)

ペロブスカイト材料の結晶作製手法

ペロブスカイト系におけ、 る単結晶形成手法 貧溶媒法 (Anti-solvent vapor-assisted crystallization methods) 逆温度結晶化法 (Inverse Temperature crystallization methods)

逆温度結晶化法 温度上昇によって溶解度を下げ、単結晶を形成。

MAPbCl₃のDMSO/DMF溶媒に対 する溶解度の温度依存*1

逆温度結晶化法によって形成された CsPbBr3単結晶^{*2}

温度上昇による溶媒の蒸発を極力防ぐため、 基板などで挟み込むのが主流。

*1 G. MACULAN *ET AL., J. PHYS. CHEM. LETT.*, **6**, 3781-3786 (2015) *2 Y. FENG *ET AL., J. MATER. CHEM. C*, **8**, 11360-11368 (2020)

貧溶媒法によるCsCu₂l₃の形成

<u>マイクロロッドのモフォロジー</u>

石英基板上にマイクロロッドが成長した マイクロロッドは365 nm UV照射下で黄色発光しており、 $CsCu_2l_3$ が形成されたと考えられる

光学特性評価

555 nm(黄色)にピークを持つPLスペクトルが観測された。また、PLEでは、325 nmに ピークを持ち、<u>1.58 eVの大きなストークスシフト</u>が得られた。CsCu₂l₃の既報と一致して いる*1

Cs-Cu-I系はBand-to-Bandではなく、自己束縛励起子 (STE) 由来の発光であること が知られており^{*1}、大きなストークスシフトもSTEに起因する

逆温度結晶化法によるCs₃Cu₂l₅の形成

<u>マイクロロッドのモフォロジー</u>

Miniscope2761

2022/12/05 18:51 | MUD8.0 x100 1 mm

m Miniscope2826

2022/12/07 20:06 | MUD8.0 x1.0k 100 µm

石英基板上にマイクロロッドが成長した 条件によって長さや太さの異なるナノロッドが形成されている

光学特性評価

440 nm(青色)にピークを持つPLスペクトルが観測された。また、PLEでは、285 nmに ピークを持ち、大きなストークスシフトが得られた。Cs₃Cu₂l₅の既報と一致している

Cs-Cu-I系はBand-to-Bandではなく、自己束縛励起子(STE)由来の発光であることが知られており、大きなストークスシフトもSTEに起因する

メタル配線

設計通りの電極形成に成功した

超音波による単結晶の剥離

形成した単結晶を基板から剥離する検討

マイクロロッドを形成した基板をアルコールに浸して超音波洗 浄をかけることで基板から剥離し液に浮かべる。

Cs₃Cu₂I₅,CsCu₂I₃単結晶の洗浄で報告のあるIPAを採用*1。

※同一箇所の観察

超音波によってマイクロロッドが剥離し、液中を漂っている様子を目視で確認した SEMで同一箇所を観察すると、明らかにマイクロロッドが移動した痕跡が見られる → 今後電極上に電気泳動で固定する検討を進めていく

*1 S. FANG ET AL., J. MATER. CHEM. C, 8, 4895-4901 (2020)