

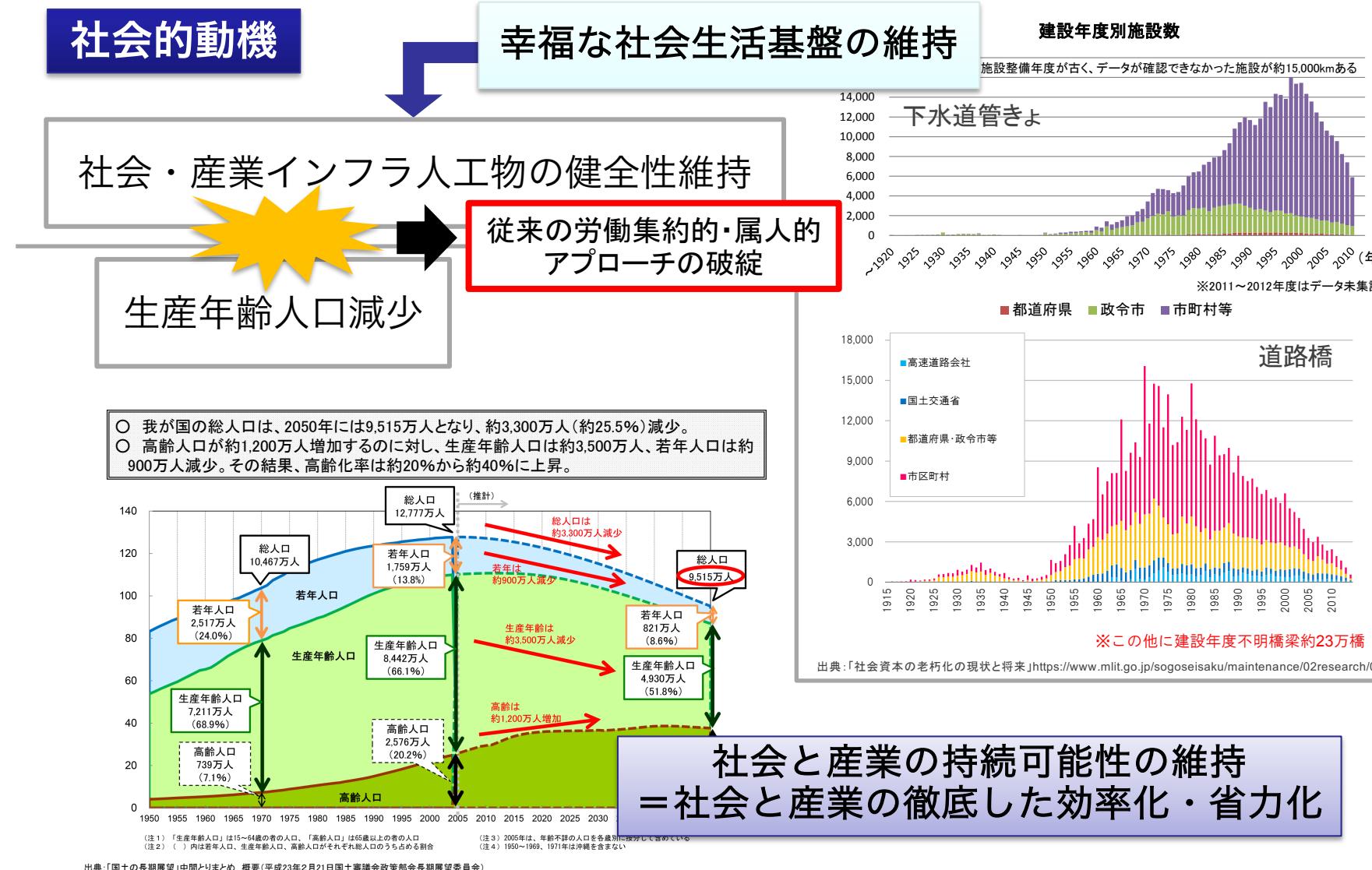
社会・産業インフラ維持のための 自律的サイバーフィジカルシステム

増田 新・射場 大輔・東 善之

京都工芸繊維大学 機械工学系

masuda@kit.ac.jp

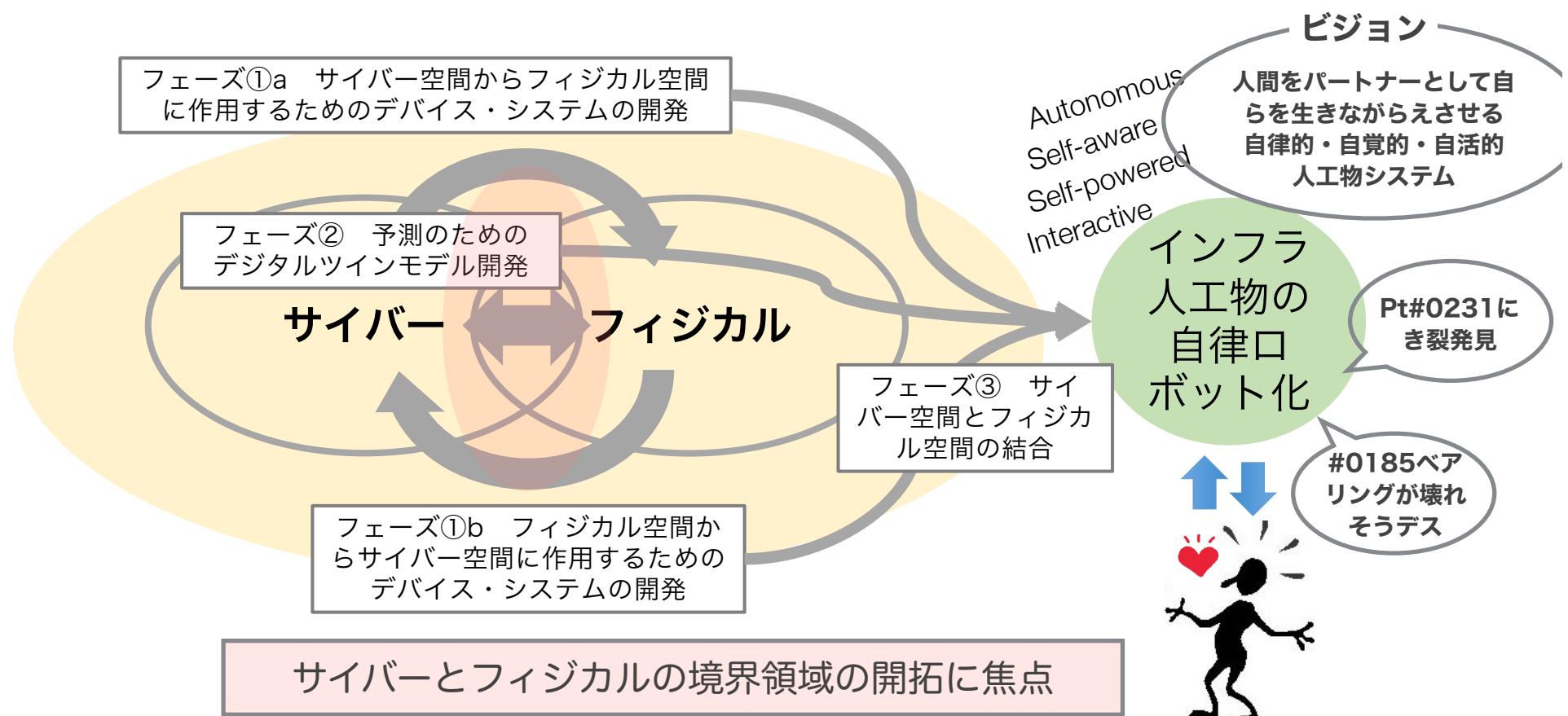
プロジェクトのモチベーション



プロジェクトの目指すところ

社会と産業のインフラ設備・構造物を、徹底した効率化・省力化のもと、持続可能なものにするための自律的アセットマネジメントシステムの構築

サイバーフィジカルシステム化



テーマ設定

- サイバー空間からフィジカル空間へ【フェーズ①a】
物理空間への能動的プローブとしてのセンシングロボット・ドローンの
自律化技術（増田・東）
- フィジカル空間からサイバー空間へ【フェーズ①b】
ホスト構造物そのものを媒体・計算資源としてデータ通信と信号処理
を行う革新的高密度センサネットワーク（増田；少し詳しくご説明）
- 余寿命予測のためのデジタルツイン【フェーズ②】
ドメイン依存性を除去するデジタルツインを組み込んだML予測モデル
(増田) , 歯車デジタルツイン (射場)

テーマ設定

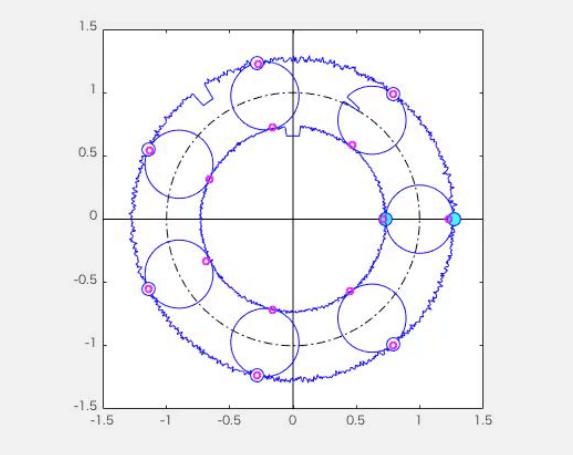
- サイバー空間からフィジカル空間へ【フェーズ①a】
物理空間への能動的プローブとしてのセンシングロボット・ドローンの
自律化技術（増田・東）
- フィジカル空間からサイバー空間へ【フェーズ①b】
ホスト構造物そのものを媒体・計算資源としてデータ通信と信号処理
を行う革新的高密度センサネットワーク（増田；少し詳しくご説明）
- 余寿命予測のためのデジタルツイン【フェーズ②】
ドメイン依存性を除去するデジタルツインを組み込んだML予測モデル
(増田) , 歯車デジタルツイン (射場)

デジタルツインによる寿命予測技術

転がり軸受や歯車の寿命予測

転がり軸受の場合

- 内輪（軸）と転動体が異なる速度で回転／自転／公転
- ドメイン依存性（諸元、組み込み機械、運転条件）
- 多様な損傷進展シナリオ（外輪↔内輪↔転動体↔保持器の損傷伝播）



滑りを考慮した軸受DT

ドメインが異なっても損傷の発生・進展機序は共通
 (転がり疲労・剥離・デブリ噛み込み)

振動センサデータから
 転がり接触点まで遡上

損傷マップ

ドメイン依存性を
 除去した情報

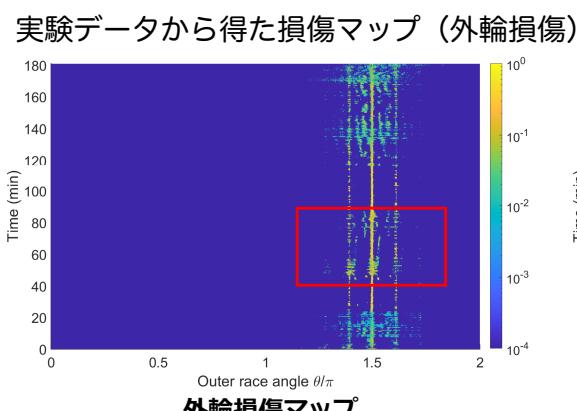
Transformer

MLによる進展
 シナリオ抽出

Transformer

進展予測モデル

余寿命予測

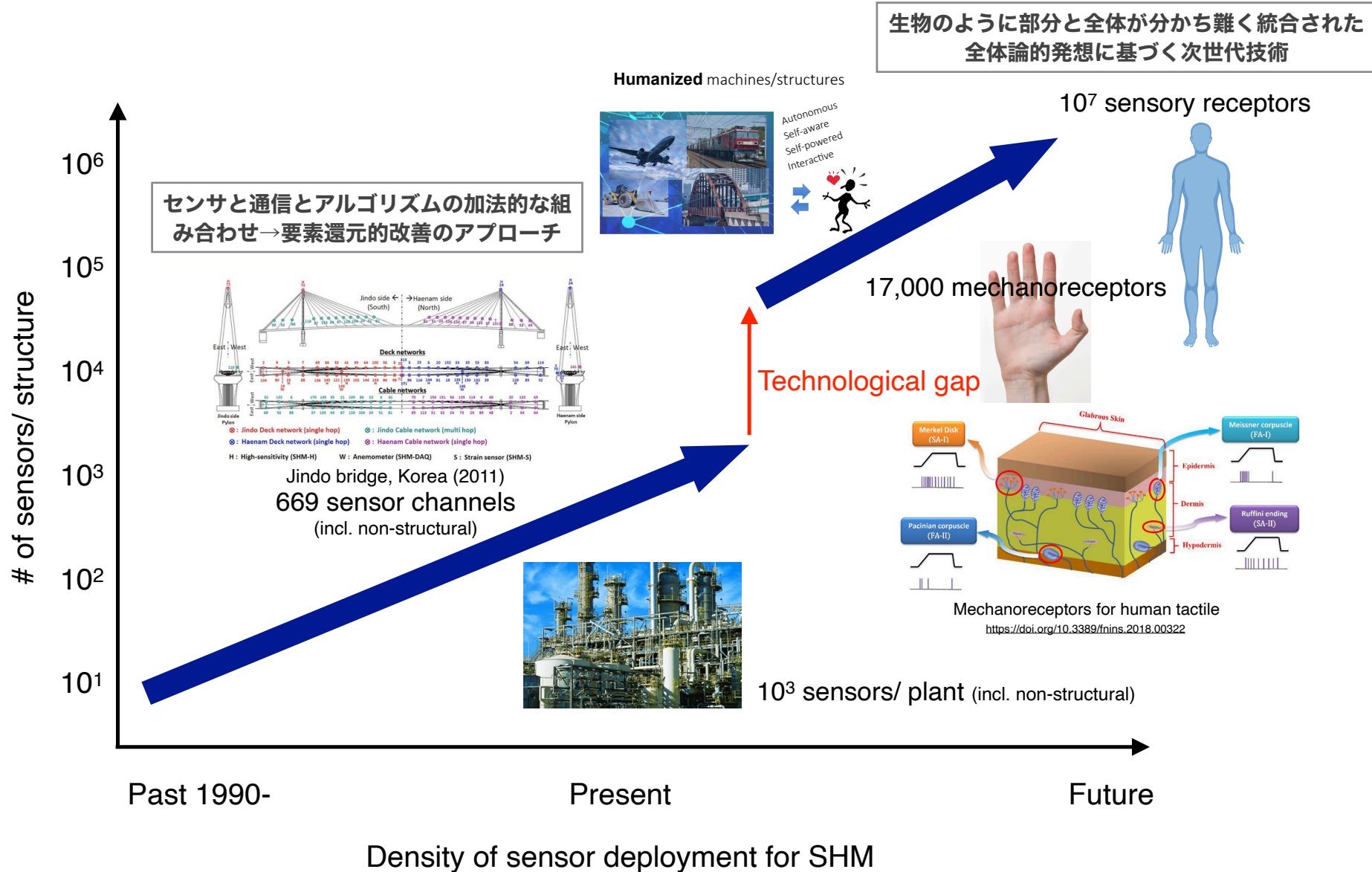


$\tilde{f}(t), \theta_i(t)$
 $\theta_c(t)$
 Spatial mapping of $\tilde{f}(t)$
 $\tilde{f}_o(\theta), \tilde{f}_i(\theta)$
 Estimation revolution angle of cage
 $\theta_c(t)$

テーマ設定

- サイバー空間からフィジカル空間へ【フェーズ①a】
物理空間への能動的プローブとしてのセンシングロボット・ドローンの
自律化技術（増田・東）
- フィジカル空間からサイバー空間へ【フェーズ①b】
ホスト構造物そのものを媒体・計算資源としてデータ通信と信号処理
を行う革新的高密度センサネットワーク（増田；少し詳しくご説明）
- 余寿命予測のためのデジタルツイン【フェーズ②】
ドメイン依存性を除去するデジタルツインを組み込んだML予測モデル
(増田) , 歯車デジタルツイン (射場)

革新的な高密度センサネットワーク



革新的な高密度センサネットワーク

■ What technologies can enable $> 10^5$ sensor density?

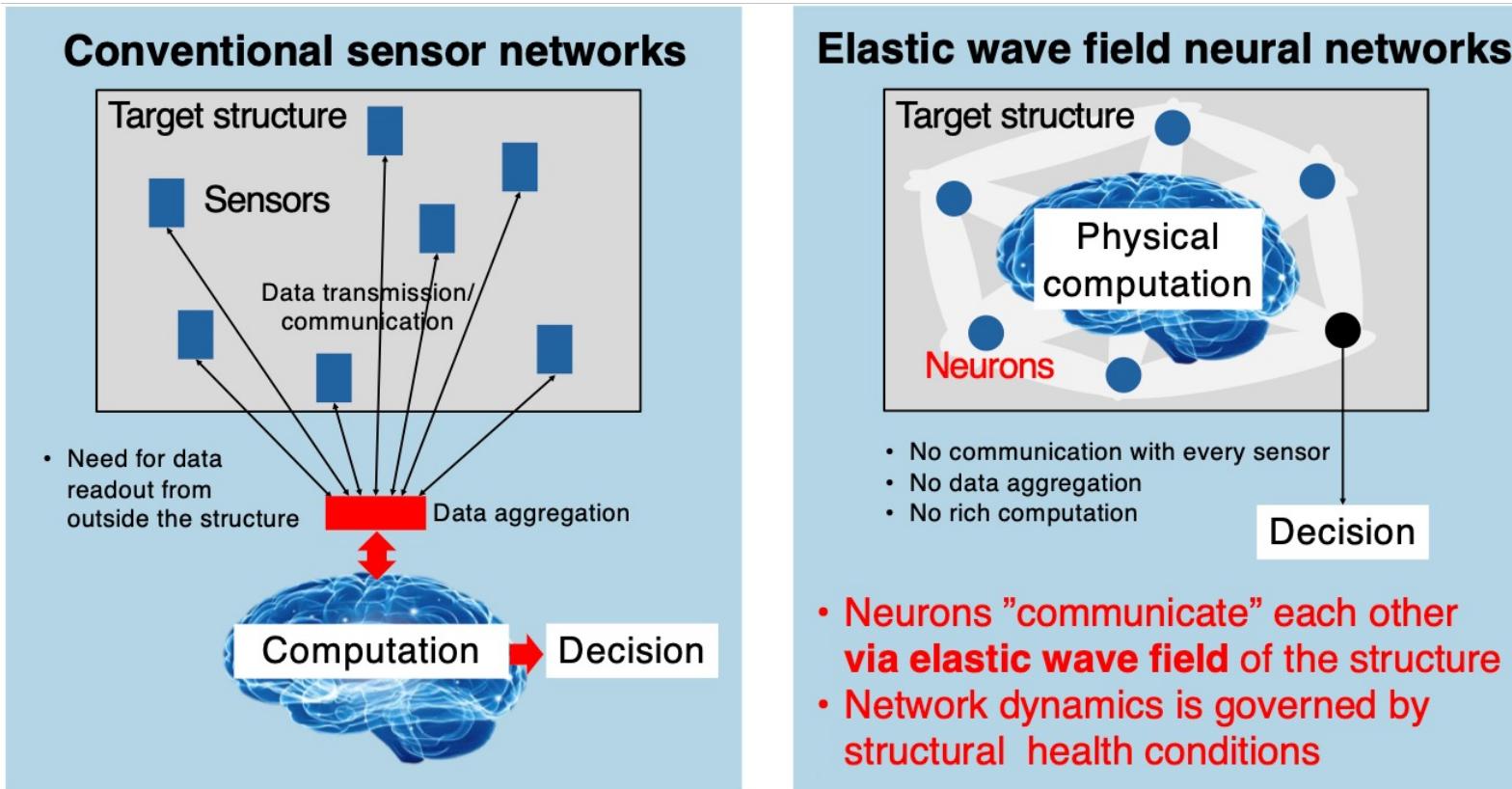
	Past (1990-)	Current	Future
Density	10^1 nodes/str	$10^2 \sim 10^3$ nodes/str	$10^5 \sim 10^6$ nodes/str
Power	Wired	Battery	Self-powered
Data comm	Wired aggregation	Wireless aggregation	?
Computing	Centralized	Edge+Cloud	?

- ✓ Tree topology
- ✓ Collected data are aggregated at a single location and computed
- ✓ Concentration of data will saturate network and computational resource as the increase of the sensor nodes and more use of higher frequency data

- ✓ Hierarchical topology
- ✓ Computational resources are allocated to sensor or intermediate node
- ✓ Rich computational resources at sensors, which increase power supply cost and maintenance cost, may limit scalability

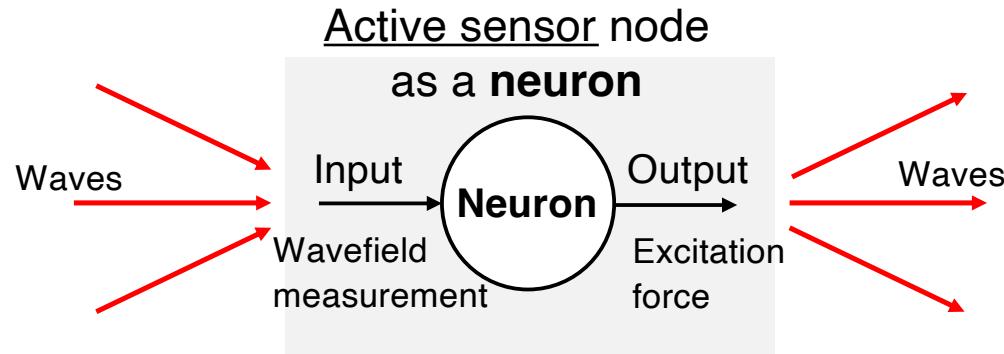
革新的な高密度センサネットワーク

構造物上に「脳」を作る
“Making a physical brain on the structure”

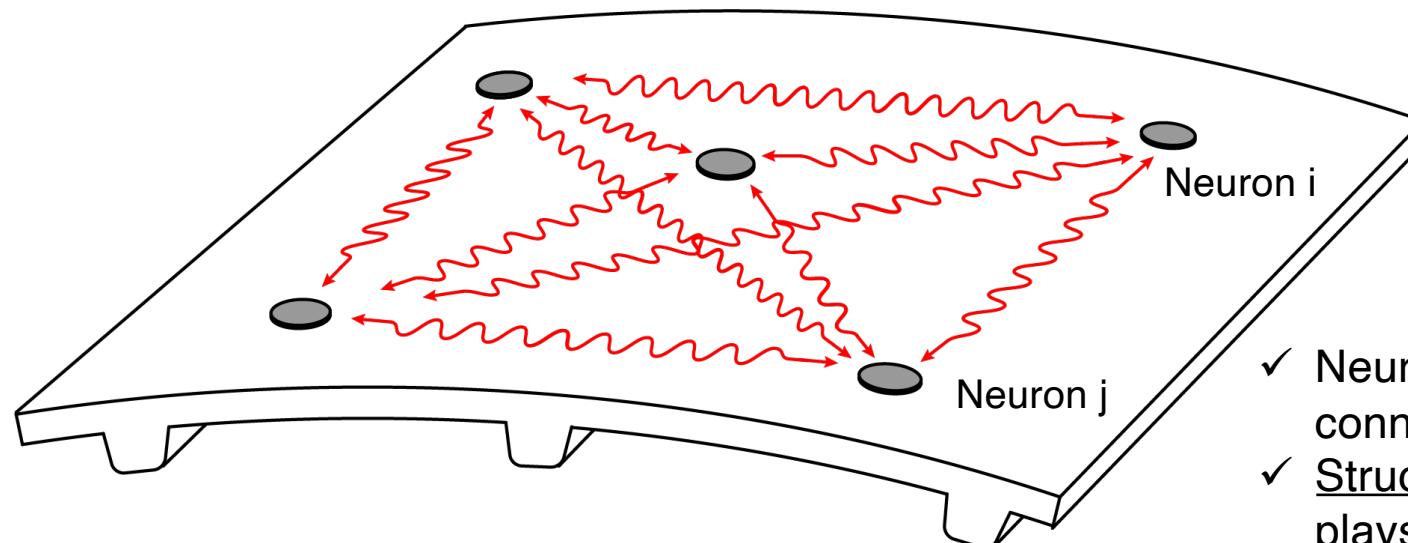


- We proposed to use the structure itself as a computational resource
- This is done by building a neural network on the structure using the elastic wave field as a medium

構造物上に「ニューラルネットワーク」を作る



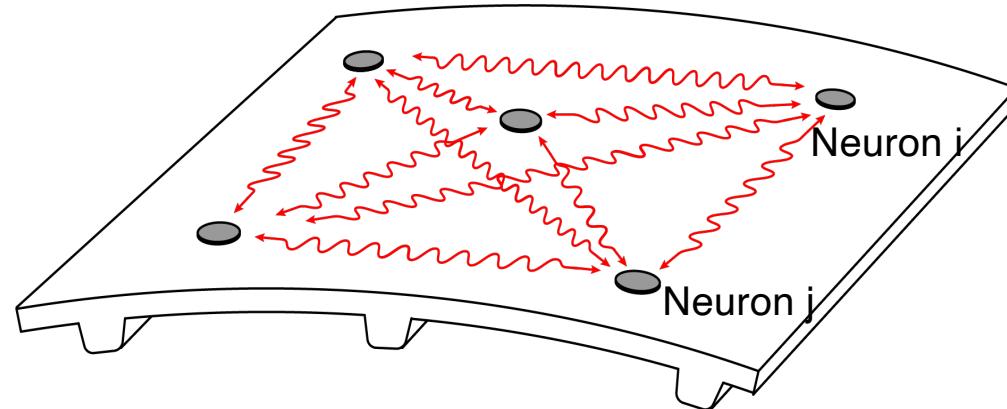
- Deploying active sensor nodes as “neurons”
- Neuron reads wave field and radiates elastic waves
- Neurons form a fully-connected Hopfield network on the host structure



Neurons on the host structure form an elastic wavefield neural network (EWFNN)

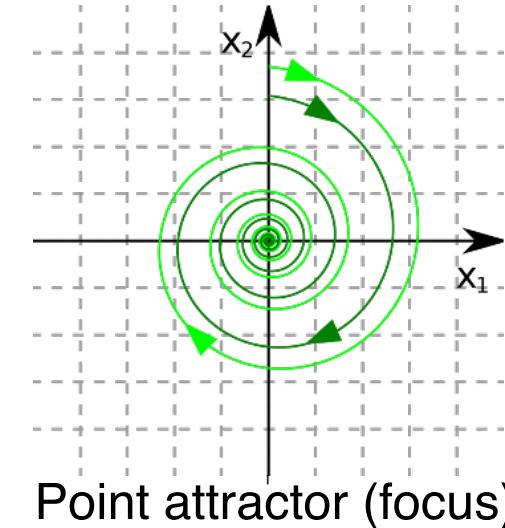
- ✓ Neurons are connected via structure
- ✓ Structural dynamics plays a role of “coupling weights” between neurons

連續時間Hopfield networkとしての動作

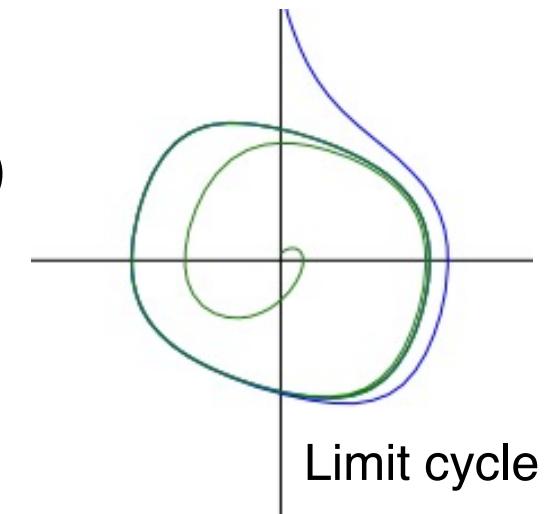


Because this network is a continuous-time fully-connected Hopfield network...

- ✓ It will have attractors (point or limit cycle)
- ✓ Change of structural dynamics changes coupling weights, and may trigger a **bifurcation** between different types of attractors



https://ja.wikipedia.org/wiki/%E5%B9%B3%E8%A1%A1%E7%82%B9#/media/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Phase_Portrait_Stable_Focus.svg



コンセプトのまとめ

■ 高密度センサからのデータ収集・信号処理・異常検出

ホスト構造物の弾性波動場を媒体としたニューラルネットワークを形成することで物理計算に置換→各ニューロンは独立に動作（スケーラビリティ, 冗長性）

■ 異常検出の原理

構造物の異常・損傷=ニューロン間の結合重みの変化, をHopfield networkのアトラクタ変化として検出

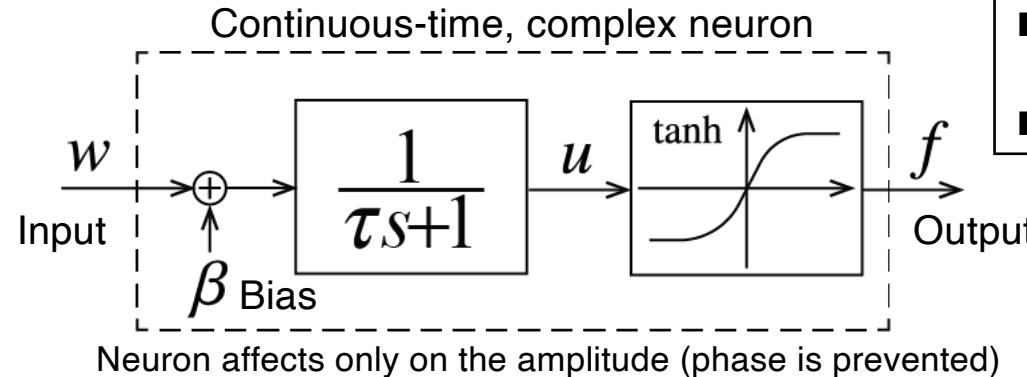
■ 物理リザバーコンピューティング?

近年研究されている物理リザバー計算はデータの非線形変換器として物理システムを利用→出力層を学習（似て非なる；物理リザバーを応用することもできる）

ニューロンの構成

単一周波数で動作

- Assuming that the network is operating in a single frequency
- Then, network response is represented by a complex amplitude (or phaser) 複素Hopfield network



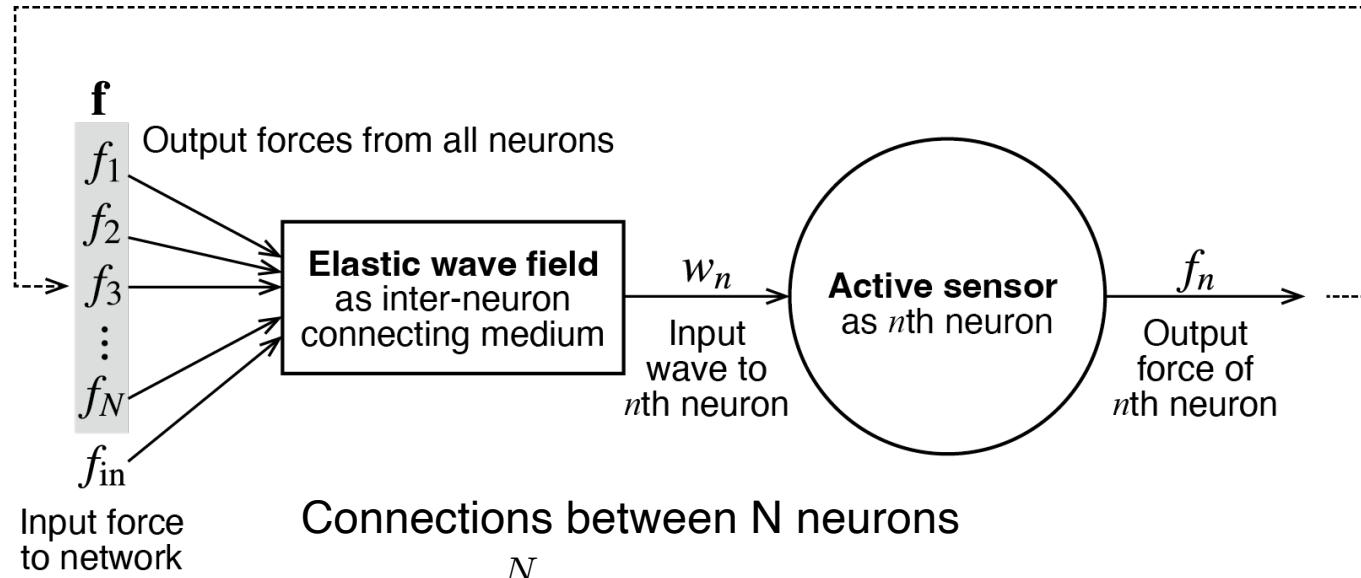
- 具体的には圧電素子を使用
- 変形を計測→非線形変換→構造物を加振
- 非線形変換は振幅飽和のみ

$$w_n(t) = \hat{w}_n(t)e^{i\omega_0 t} \quad f_n(t) = \hat{f}_n(t)e^{i\omega_0 t}.$$

$$\tau_n \frac{d\hat{u}_n(t)}{dt} + \hat{u}_n(t) = \hat{w}_n(t) + \beta_n$$

$$\hat{f}_n(t) = \underbrace{\gamma_n \tanh(\alpha_n |\hat{u}_n(t)|)}_{\text{Amplitude altered}} \underbrace{\hat{u}_n(t) / |\hat{u}_n(t)|}_{\text{Phase preserved}}$$

ネットワーク全体のダイナミクス



$$\hat{w}_n(t) = \sum_{m=1}^N \underbrace{G_{nm}(\omega_o)}_{\text{FRF between neurons}} \hat{f}_m(t) + G_n^{\text{in}}(\omega_o) \hat{f}_{in}$$

Overall dynamics: autonomous system with nonlinear term

$$\tau_n \frac{d\hat{u}_n(t)}{dt} + \hat{u}_n(t) = \sum_{m=1}^N G_{nm}(\omega_o) \gamma_m \tanh(\alpha_m |\hat{u}_m(t)|) \frac{\hat{u}_m(t)}{|\hat{u}_m(t)|}$$

非線形微分方程式で記述

$$+ \underbrace{G_n^{\text{in}}(\omega_o) \hat{f}_{in}}_{(n=1, \dots, N)} + \beta_n$$

These terms can be eliminated by training the bias

单一振動モードの場合：1自由度に縮約

$$\tau \frac{da(t)}{dt} + a(t) = \operatorname{Re} [\lambda(\omega_o)] \psi(a(t)) \quad \text{ODE for amplitude}$$

By investigating the stability of the equilibria of this system, we found that

When $\operatorname{Re} [\lambda(\omega_o)] > 1/\psi'(0)$

the neuron amp is attracted to a limit cycle

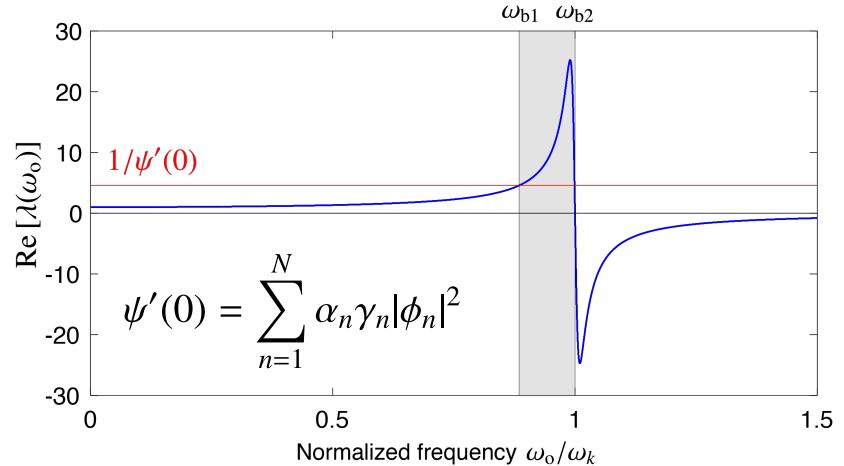
→ The network shows **modulated** response

↑
Hopf bifurcation

When $\operatorname{Re} [\lambda(\omega_o)] < 1/\psi'(0)$

the neuron amp is converged to zero

→ The network shows **steady-state** response



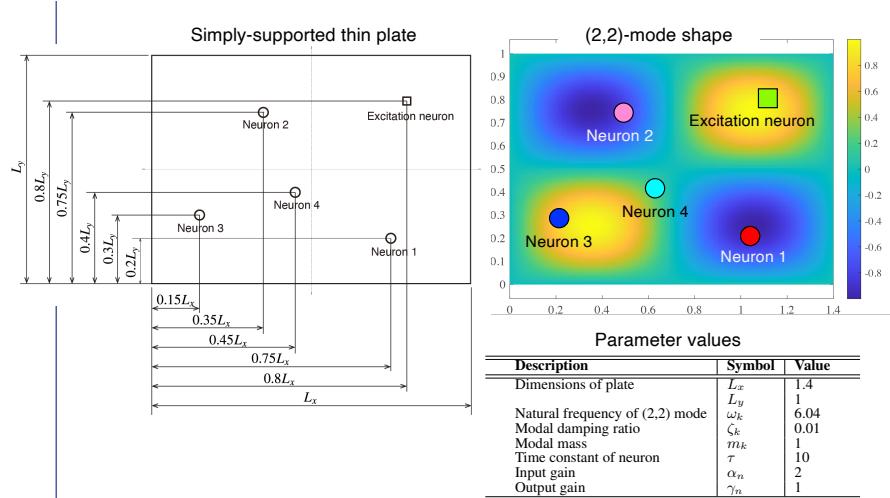
- When the operating frequency is slightly lower than the natural frequency, the network shows modulated response
- Otherwise, the network shows steady-state response

モードコンプライアンスの実部と調整可能な閾値の大小関係

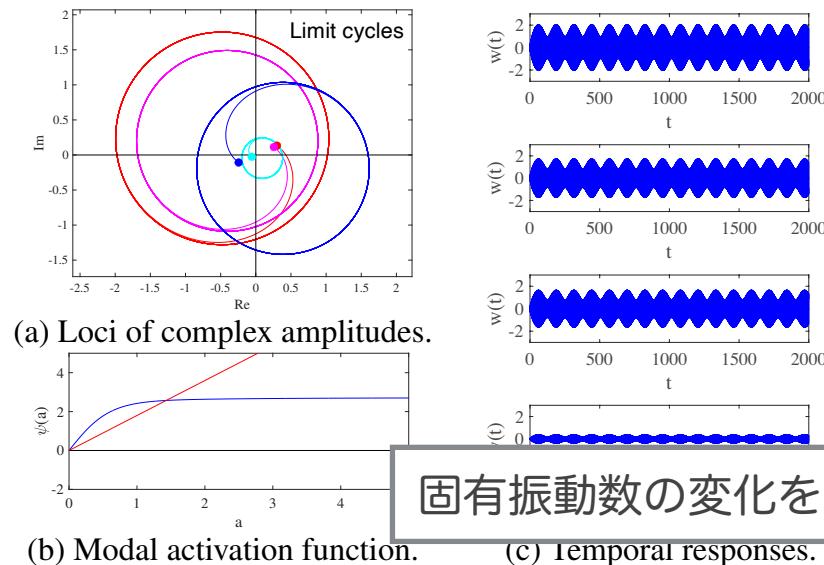
シンプルな分岐則（ホップ分岐）に帰着

ポイントアトラクタ ↔ リミットサイクル

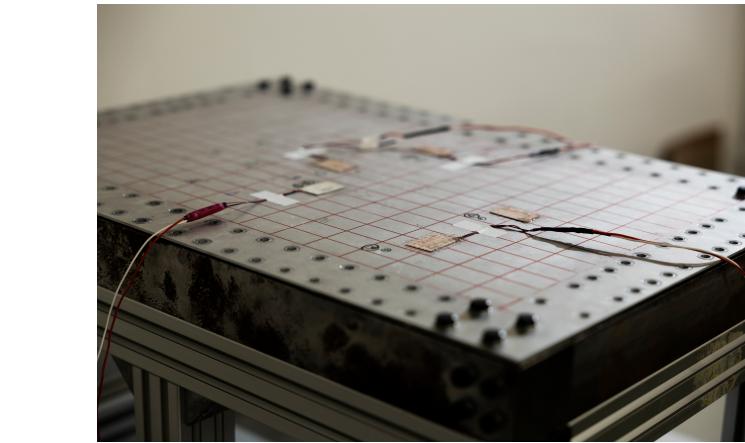
数値モデルで確認



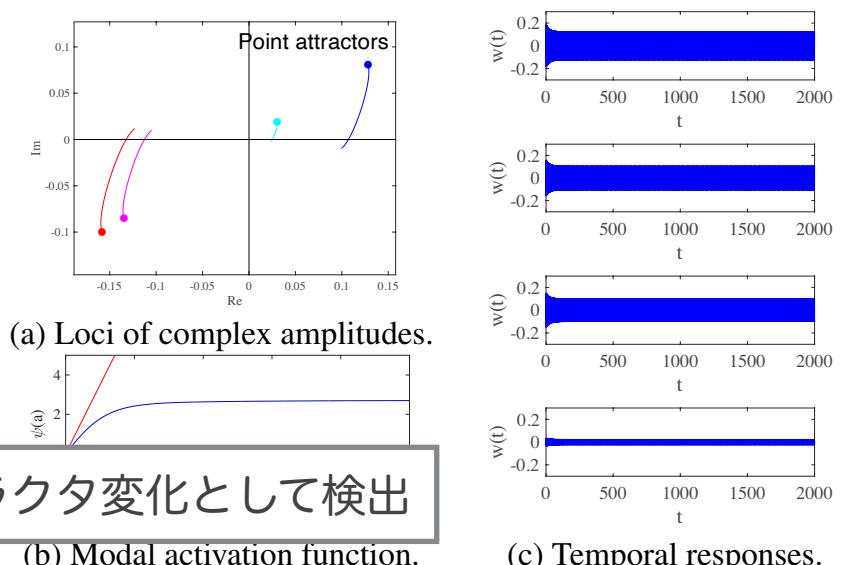
Results ($\omega_0=0.98\omega_k$) リミットサイクルに吸引



固有振動数の変化をアトラクタ変化として検出



Results ($\omega_0=0.9\omega_k$) ポイントアトラクタに吸引



2023年度成果

■ 学術論文1件, 国際会議発表2件, 国内口頭発表5件, 共同研究1件, 特許登録1件

- C. Wang, N. Miura, A. Masuda, Triboelectric film sensor for integrity monitoring of bolted joints, *Machines*, 11(8), 826, pp. 1-19, 2023. DOI: 10.3390/machines11080826
- K. Takashima, A. Masuda, Physical reservoir-based health monitoring of a structure with nonlinear attachments, *Proceedings of the 4th Asia Pacific Conference of the Prognostics and Health Management*, R02-02, pp. 1-5, 2023. DOI: 10.36001/phmap.2023.v4i1.3610
- A. Masuda, K. Takashima, Elastic wave field neural networks for structural health monitoring: an analytical and numerical study of multiple neurons, *Proceedings of the 4th Asia Pacific Conference of the Prognostics and Health Management*, R03-09, pp. 1-6, 2023. DOI: 10.36001/phmap.2023.v4i1.3761
- 特許第7235618号, 吸着力推定方法、吸着力推定装置、および、吸着力推定プログラム, 東 善之, 中村 哲也, 増田 新, 三浦 奈々子

■ 科研費基盤(B)採択 (2024-2026)

群体として動作し構造ヘルスモニタリングを行う振動発電ネットワーク技術の開拓