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モチベーション

社会・産業インフラ人工物の健全性維持
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出典：国土交通省調べ 注）平均年齢は、建設年度が把握されている施設の平均 
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■高速道路会社

■国土交通省

■都道府県・政令市等

■市区町村

高速自動車国道

約20,000橋
（3%）

直轄国道

約41,000橋（6%）

補助国道

約34,000橋
（5%）

都道府県道

約110,000橋
（15%）

市町村道

約520,000橋
（72%）

国土交通省, 約38,000橋,（5%）

高速道路会社, 

約23,000橋,（3%）

都道府県, 

約130,000橋

（19%）

道路公社, 

約2,000橋, (0.3%)

政令市,

約46,000橋,

(6%)市区町村, 

約480,000橋,

(66%)

橋梁の現状

橋梁
約72万橋

地方公共団体管理
約66万橋

○道路管理者別

（参考）道路種別別

橋梁
約72万橋

※この他に建設年度不明橋梁約23万橋

（出典）道路局調べ(H26.12時点）

○建設年度別橋梁数

○建設後50年を経過した橋梁の割合

18%

42%

2015時点

2025時点

※この他に建設年度不明橋梁約23万橋
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社会的動機

社会と産業の持続可能性の維持
＝社会と産業の徹底した効率化・省力化

幸福な社会生活基盤の維持

従来の労働集約的・属人的
アプローチの破綻

道路橋

下水道管きょ

出典：「社会資本の老朽化の現状と将来」https://www.mlit.go.jp/sogoseisaku/maintenance/02research/02_01.html



京都グリーンラボ 近領域連携プロジェクト報告会, 2024/3/19, 京都工芸繊維大学

京都工芸繊維大学プロジェクトの目指すところ
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社会と産業のインフラ設備・構造物を，徹底した効率化・省力化のもと， 
持続可能なものにするための自律的アセットマネジメントシステムの構築

フィジカルサイバー

フェーズ①a サイバー空間からフィジカル空間
に作用するためのデバイス・システムの開発

フェーズ② 予測のための
デジタルツインモデル開発

フェーズ①b フィジカル空間か
らサイバー空間に作用するための
デバイス・システムの開発

インフラ
人工物の
自律ロ
ボット化

Self-
awa

re

Self-
pow

ered

Inter
activ

e

Auto
nom

ous

フェーズ③ サイ
バー空間とフィジカ
ル空間の結合

人間をパートナーとして自
らを生きながらえさせる 
自律的・自覚的・自活的 

人工物システム

サイバーとフィジカルの境界領域の開拓に焦点
ロボット／物理リザバー計算／デジタルツイン

#0185ベア
リングが壊れ
そうデス

Pt#0231に
き裂発見

サイバーフィジカルシステム化
ビジョン
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■ サイバー空間からフィジカル空間へ【フェーズ①a】 
物理空間への能動的プローブとしてのセンシングロボット・ドローンの
自律化技術（増田・東） 

■ フィジカル空間からサイバー空間へ【フェーズ①b】 
ホスト構造物そのものを媒体・計算資源としてデータ通信と信号処理
を行う革新的高密度センサネットワーク（増田；少し詳しくご説明） 

■ 余寿命予測のためのデジタルツイン【フェーズ②】 
ドメイン依存性を除去するデジタルツインを組み込んだML予測モデル
（増田），歯車デジタルツイン（射場） 
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転がり軸受や歯車の寿命予測

■ 内輪（軸）と転動体が異なる速
度で回転／自転／公転 

■ ドメイン依存性（諸元，組み込み
機械，運転条件） 

■ 多様な損傷進展シナリオ（外輪↔
内輪↔転動体↔保持器の損傷伝播

ドメインが異なっても損傷
の発生・進展機序は共通
（転がり疲労・剥離・デブリ噛み込み）

振動センサデータから 
転がり接触点まで遡上

ドメイン依存性を
除去した情報

MLによる進展
シナリオ抽出

進展予測モデル

余寿命予測

滑りを考慮した軸受DT
UKF/Lasso

Transformer

背景

2024/3/15 令和5年度 修士論文審査会 2

転がり軸受
回転機械に必要不可欠な機械要素最も損傷しやすい要素の一つ

転がり軸受の損傷

https://koyo.jtekt.co.jp/support/faq/article/001667.php

機械全体の重大な故障に繋がる可能性

• 莫大な修理費用
• ダウンタイムの増大

基
本
平
均
寿
命

破
損
確
率
密
度

基
本
定
格
寿
命

寿命10％

メンテナンス手法
基本定格寿命を基準にした転がり軸受交換

個々の軸受で寿命に大きなばらつき

個々の軸受に応じた管理が必要になる

損傷状態マッピング

2024/3/15 令和5年度 修士論文審査会 13

一回目の損傷マッピングでは以下の𝜃𝑐用いる

𝜃𝑐,𝑛𝑜𝑠𝑙𝑖𝑝 𝑡 =
1
2

1 −
𝑑
𝐷
cos𝛼 Ω𝑡

交互実行の終了条件
𝜽𝑐
𝑙 − 𝜽𝑐

𝑙−1
2

𝜽𝑐
𝑙 − 𝜽𝒄,𝒏𝒐𝒔𝒍𝒊𝒑 2

< 0.05 or 𝑙 > 50
𝑙: 交互実行の回数

Spatial mapping of ሚ𝑓 𝑡
ሚ𝑓𝑜(𝜃), ሚ𝑓𝑖(𝜃)

Estimation revolution angle of cage
𝜃𝑐(𝑡)

ሚ𝑓 𝑡 , 𝜃𝑖(𝑡)
ሚ𝑓 𝑡
ሚ𝑓𝑜(𝜃)
ሚ𝑓𝑖(𝜃)

𝜃𝑐(𝑡)提案手法の検証（軸受1の損傷マップ）

2024/3/15 令和5年度 修士論文審査会 19

外輪損傷マップ 内輪損傷マップ

• 主に外輪損傷マップにピークが現れている，外輪損傷が支配的であると言える
• 計測終盤では，内輪損傷マップにもピークが強く表れている

実験データから得た損傷マップ（外輪損傷）

損傷マップ

転がり軸受の場合

Transformer
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Past 1990- Present Future

Salimi-Nezhad et al. A Digital Hardware Realization for…

FIGURE 1 | A cross section of the glabrous skin which shows individual type of mechanoreceptors. The obtained spike trains in response to a specific stimulus are

also shown.

TABLE 1 | Parameter values of spiking model of SA-I and FA-I mechanoreceptors

used in the simulations.

Parameter Spiking Bursting

a 0.02 0.02

b 0.2 0.2

c −65 −50

d 6 1.5

Vth 30mV 30mV

Cm 1 1

the threshold value (Vth= 30mV), one spike was generated
and the membrane voltage and the recovery variable are reset
according to (3). Parameters c and d contribute as well in
defining the adaptation properties of the neuron. The values of
the parameters a, b, c, and d are chosen to obtain regular spiking
and bursting dynamics (Izhikevich, 2003), which is the case of
human finger mechanoreceptors. Computations are performed
in MATLAB with a time step, dt = 0.01ms. Similarly, following
model matches the spiking activity of FA-I mechanoreceptor cells
as discussed in detail in Rongala et al. (2015) and Oddo et al.
(2017) and Yi et al. (2017).

dv(t)

dt
= 0.04V(t)2 + 5V (t) + 140− u (t) +

K2

Cm

dI(t)

dt
(4)

du(t)

dt
= a(bv (t)− u (t)) (5)

If v ≥ 30mv

{

v← c
u← u+ d

(6)

Indeed, these spiking models of the mechanoreceptor cells have
shown promise as computationally efficient models to reproduce
a wide range of neural responses to stimuli (Kim et al., 2012;
Rongala et al., 2015; Friedl et al., 2016; Yi et al., 2017). In sum, two
kind of mechanoreceptors namely, SA-I and FA-I models which
are described by the Equations (1)–(6), are used to encoded the
input force.

Digital Neuromorphic Mechanoreceptor
In this section, we present a digital mechanoreceptor circuit
with a new architecture based on the mechanoreceptor spiking
model. This digital framework might be implemented on low-
cost and commonly available hardware platforms such as
FPGAs. Computation methods used in Von Neumann PCs or
SIMD processing units such as GPUs or DSPs significantly
differ from classic methods used for FPGA (Yang et al.,
2016). FPGA, not only implement a real-time platform with
the flexibility of programmable logic but also its ability in
parallel, high-speed computation, make it as a good choice for
designing neuromorphic systems (Nazari et al., 2015c). Indeed,
FPGAs can significantly improve the speed of signal processing
compared with the software-based methods. In recent years,
implementation of digital neuronal networks on FPGAs have
attracted considerable attention and several successful cases have
been reported in literature (Sabarad et al., 2012; Nazari et al.,
2014b).

The digital circuit for the Merkel (SA-I) mechanoreceptor
model is obtained first by discretizing its spiking model, namely
Equations (1)–(3) using Euler method. The discrete equations are
as follows with h= 0.01 ms:

v [n+ 1] = v [n]+ h ∗ (0.04 ∗ v [n] ∗ v [n]+ 5 ∗ v [n]

+140− u [n]+
K1

Cm
I [n]) (7)

u [n+ 1] = h ∗ (0.02 ∗ (0.2 ∗ v[n]− u[n])) + u[n] (8)

Similarly, discretizing the Meissner’s Corpuscle (FA-I)
mechanoreceptor spiking model yields:

v [n+ 1] = v [n]+ h ∗ (0.04 ∗ v [n] ∗ v [n]+ 5 ∗ v [n]+ 140

−u [n])+
K2

Cm
(I [n+ 1]− I [n]) (9)

u [n+ 1] = h ∗ (0.02 ∗ (0.2 ∗ v[n]− u[n])) + u[n] (10)

Considering Equations (7)–(10), Figure 3 shows the scheduling
diagram for (a) Merkel Cells (SA-I), (b) Meissner’s Corpuscle
(FA-I). This figure describes the essential steps to produce the
membrane potential (v) and the recovery variable (u) of the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2018 | Volume 12 | Article 322
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Mechanoreceptors for human tactile

Jindo bridge, Korea (2011)

https://doi.org/10.3389/fnins.2018.00322

革新的な高密度センサネットワーク

8

生物のように部分と全体が分かち難く統合された
全体論的発想に基づく次世代技術

センサと通信とアルゴリズムの加法的な組
み合わせ→要素還元的改善のアプローチ
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Motivation
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! What technologies can enable > 105 sensor density?

Motivation

4

Past (1990-) Current Future
Density 101 nodes/str 102~103 nodes/str 105~106 nodes/str
Power Wired Battery Self-powered

Data comm Wired
aggregation

Wireless 
aggregation ?

Computing Centralized Edge+Cloud ?

ü Tree topology
ü Collected data are aggregated at a 

single location and computed
ü Concentration of data will saturate 

network and computational resource
as the increase of the sensor nodes 
and more use of higher frequency data

ü Hierarchical topology
ü Computational resources are allocated 

to sensor or intermediate node
ü Rich computational resources at 

sensors, which increase power supply 
cost and maintenance cost, may limit 
scalability
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Our approach

4

n We proposed to use the structure itself as a computational resource
n This is done by building a neural network on the structure using the elastic wave field 

as a medium

構造物上に「脳」を作る
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Neurons on the structure make a network
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Input
Neuron

Output

Wavefield
measurement

Excitation 
force

WavesWaves

Active sensor node
as a neuron

Neurons on the host structure form an 
elastic wavefield neural network (EWFNN)

Neuron i

Neuron j

n Deploying active sensor 
nodes as “neurons”

n Neuron reads wave field and 
radiates elastic waves

n Neurons form a fully-
connected Hopfield network
on the host structure

ü Neurons are 
connected via structure

ü Structural dynamics 
plays a role 
of ”coupling weights”
between neurons 
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Behavior of Hopfield-type network

6

Neuron i

Neuron j

Because this network is a continuous-time 
fully-connected Hopfield network…
ü It will have attractors (point or limit cycle)
ü Change of structural dynamics changes 

coupling weights, and may trigger a 
bifurcation between different types of 
attractors Limit cycle

Point attractor (focus)
https://ja.wikipedia.org/wiki/%E5%B9%B3%E8%A1%A1%E7%82%B9#/media/

%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Phase_Portrait_Stable_Focus.svg
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■ 高密度センサからのデータ収集・信号処理・異常検出 
ホスト構造物の弾性波動場を媒体としたニューラルネットワークを形
成することで物理計算に置換→各ニューロンは独立に動作（スケーラ
ビリティ，冗長性） 

■ 異常検出の原理 
構造物の異常・損傷＝ニューロン間の結合重みの変化，をHopfield 
networkのアトラクタ変化として検出 

■ 物理リザバーコンピューティング？ 
近年研究されている物理リザバー計算はデータの非線形変換器として物
理システムを利用→出力層を学習（似て非なる；物理リザバーを応用
することもできる） 
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Figure 1. Concept of EWFNN-based SHM.

Specifically, we consider a large number of active sensor
nodes deployed on the structure as neurons. One node per-
forms as both a sensor and an actuator, and reads the elastic
wave propagating through the structure as an input and out-
puts it as an excitation force to the structure after performing
a nonlinear activation function (Fig. 2). This means that these
neurons form a Hopfield-type fully-connected neural network
coupled via the elastic wave field of the host structure. In the
previous paper (Masuda, Sakai, & Takashima, 2023), we de-
signed a EWFNN operating in a single frequency, in which
all neurons operate in the same frequency with slowly vary-
ing amplitude and phase. The operation of the neuron is then
regarded as a nonlinear dynamical system of the complex am-
plitude, and the connection between arbitrary two neurons is
represented by a complex weight, i.e., the value of the fre-
quency response function (FRF) between them at the operat-
ing frequency.

Since the FRF between neurons act as the connection weights
in this network, the behavior of the network essentially re-
flects the dynamic characteristics of the structure. Therefore,
the entire network can function as a damage detector only re-
lying on simple and independent calculation, not referring to
the internal states of other neurons if the network behavior
drastically change with the presence of the damage. In the
previous paper (Masuda, Sakai, & Takashima, 2023), it was
presented that the network can be designed so that it yields
a bifurcation caused by the damage. This can be a major ad-
vantage over the conventional sensor network-based SHM ap-
proaches because it does not require inter-neuron data trans-
mission or data aggregation to perform damage detection al-
gorithms.

The previous study presented the formulation of EWFNN
driven by a single-frequency excitation, particularly focus-
ing on a single-neuron network as the smallest configura-
tion (Masuda, Sakai, & Takashima, 2023). In this study,
the formulation and analysis are extended to multiple-neuron
configuration, assuming single-mode operation. Equilib-
rium analysis is performed to derive a simple criterion of
Hopf bifurcation of the complex amplitude due to damage,
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Figure 2. Structure of EWFNN.

which corresponds to the change from modulated response
to steady-state, and to discuss how the existence of multiple
neurons can contribute to the detection of local damage. Nu-
merical experiments are presented to validate the analytical
findings using a single-mode model of a thin plate structure.

2. FORMULATION

2.1. Modeling of neurons operating in single frequency

The basic formulation of EWFNNs presented in the previous
study (Masuda, Sakai, & Takashima, 2023) is briefly summa-
rized in this section. The EWFNN operating under a single
sinusoidal excitation with an operating frequency of ωo can
be treated as a continuous-time dynamical system of slowly
varying complex amplitudes of the input and output of neu-
rons, of which absolute value and argument represent slowly
varying real amplitude and phase, respectively. Let wn, fn,
and fin be the input and output of nth neuron, and the in-
put force exciting the network, respectively. Then, the slow
dynamics assumption allows us to represent them as

wn(t) = ŵn(t)e
iωot, fn(t) = f̂n(t)e

iωot, fin(t) = f̂ine
iωot

(1)
where variables with hat denote slowly varying complex am-
plitudes. The input-output dynamics of the nth neuron is then
given by

τn
dûn(t)

dt
+ ûn(t) = ŵn(t) + βn (2)

f̂n(t) = γn tanh(αn|ûn(t)|)ûn(t)/|ûn(t)| (3)

where ûn is a complex-valued state variable, and τn is a time
constant set much larger than 2π/ωo to ensure the slow dy-
namics of the network. Equation (3) states that the output
is calculated by performing a complex split activation func-
tion classified as type B by Bassey et al. (Bassey, Qian, & Li,
2021) on the state variable, where αn and γn are input and
output gains, respectively. This formulation is similar to that
used in the formulation of continuous-time Hopfield networks
(Hopfield, 1984; Chen, Zhang, & Wang, 2004).

The dynamics of the host structure is described using the
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which corresponds to the change from modulated response
to steady-state, and to discuss how the existence of multiple
neurons can contribute to the detection of local damage. Nu-
merical experiments are presented to validate the analytical
findings using a single-mode model of a thin plate structure.

2. FORMULATION

2.1. Modeling of neurons operating in single frequency

The basic formulation of EWFNNs presented in the previous
study (Masuda, Sakai, & Takashima, 2023) is briefly summa-
rized in this section. The EWFNN operating under a single
sinusoidal excitation with an operating frequency of ωo can
be treated as a continuous-time dynamical system of slowly
varying complex amplitudes of the input and output of neu-
rons, of which absolute value and argument represent slowly
varying real amplitude and phase, respectively. Let wn, fn,
and fin be the input and output of nth neuron, and the in-
put force exciting the network, respectively. Then, the slow
dynamics assumption allows us to represent them as

wn(t) = ŵn(t)e
iωot, fn(t) = f̂n(t)e

iωot, fin(t) = f̂ine
iωot

(1)
where variables with hat denote slowly varying complex am-
plitudes. The input-output dynamics of the nth neuron is then
given by

τn
dûn(t)

dt
+ ûn(t) = ŵn(t) + βn (2)

f̂n(t) = γn tanh(αn|ûn(t)|)ûn(t)/|ûn(t)| (3)

where ûn is a complex-valued state variable, and τn is a time
constant set much larger than 2π/ωo to ensure the slow dy-
namics of the network. Equation (3) states that the output
is calculated by performing a complex split activation func-
tion classified as type B by Bassey et al. (Bassey, Qian, & Li,
2021) on the state variable, where αn and γn are input and
output gains, respectively. This formulation is similar to that
used in the formulation of continuous-time Hopfield networks
(Hopfield, 1984; Chen, Zhang, & Wang, 2004).

The dynamics of the host structure is described using the
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nodes deployed on the structure as neurons. One node per-
forms as both a sensor and an actuator, and reads the elastic
wave propagating through the structure as an input and out-
puts it as an excitation force to the structure after performing
a nonlinear activation function (Fig. 2). This means that these
neurons form a Hopfield-type fully-connected neural network
coupled via the elastic wave field of the host structure. In the
previous paper (Masuda, Sakai, & Takashima, 2023), we de-
signed a EWFNN operating in a single frequency, in which
all neurons operate in the same frequency with slowly vary-
ing amplitude and phase. The operation of the neuron is then
regarded as a nonlinear dynamical system of the complex am-
plitude, and the connection between arbitrary two neurons is
represented by a complex weight, i.e., the value of the fre-
quency response function (FRF) between them at the operat-
ing frequency.

Since the FRF between neurons act as the connection weights
in this network, the behavior of the network essentially re-
flects the dynamic characteristics of the structure. Therefore,
the entire network can function as a damage detector only re-
lying on simple and independent calculation, not referring to
the internal states of other neurons if the network behavior
drastically change with the presence of the damage. In the
previous paper (Masuda, Sakai, & Takashima, 2023), it was
presented that the network can be designed so that it yields
a bifurcation caused by the damage. This can be a major ad-
vantage over the conventional sensor network-based SHM ap-
proaches because it does not require inter-neuron data trans-
mission or data aggregation to perform damage detection al-
gorithms.

The previous study presented the formulation of EWFNN
driven by a single-frequency excitation, particularly focus-
ing on a single-neuron network as the smallest configura-
tion (Masuda, Sakai, & Takashima, 2023). In this study,
the formulation and analysis are extended to multiple-neuron
configuration, assuming single-mode operation. Equilib-
rium analysis is performed to derive a simple criterion of
Hopf bifurcation of the complex amplitude due to damage,
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which corresponds to the change from modulated response
to steady-state, and to discuss how the existence of multiple
neurons can contribute to the detection of local damage. Nu-
merical experiments are presented to validate the analytical
findings using a single-mode model of a thin plate structure.

2. FORMULATION

2.1. Modeling of neurons operating in single frequency

The basic formulation of EWFNNs presented in the previous
study (Masuda, Sakai, & Takashima, 2023) is briefly summa-
rized in this section. The EWFNN operating under a single
sinusoidal excitation with an operating frequency of ωo can
be treated as a continuous-time dynamical system of slowly
varying complex amplitudes of the input and output of neu-
rons, of which absolute value and argument represent slowly
varying real amplitude and phase, respectively. Let wn, fn,
and fin be the input and output of nth neuron, and the in-
put force exciting the network, respectively. Then, the slow
dynamics assumption allows us to represent them as

wn(t) = ŵn(t)e
iωot, fn(t) = f̂n(t)e

iωot, fin(t) = f̂ine
iωot

(1)
where variables with hat denote slowly varying complex am-
plitudes. The input-output dynamics of the nth neuron is then
given by

τn
dûn(t)

dt
+ ûn(t) = ŵn(t) + βn (2)

f̂n(t) = γn tanh(αn|ûn(t)|)ûn(t)/|ûn(t)| (3)

where ûn is a complex-valued state variable, and τn is a time
constant set much larger than 2π/ωo to ensure the slow dy-
namics of the network. Equation (3) states that the output
is calculated by performing a complex split activation func-
tion classified as type B by Bassey et al. (Bassey, Qian, & Li,
2021) on the state variable, where αn and γn are input and
output gains, respectively. This formulation is similar to that
used in the formulation of continuous-time Hopfield networks
(Hopfield, 1984; Chen, Zhang, & Wang, 2004).

The dynamics of the host structure is described using the
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構造物を加振 

■ 非線形変換は振幅飽和のみ

単一周波数で動作
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FRFs at the operating frequency:

ŵn(t) =
N∑

m=1

Gnm(ωo)f̂m(t) +Gin
n (ωo)f̂in (4)

where Gnm(ω) is the FRF from the mth neuron to nth neu-
ron, and Gin

n (ω) is the FRF from the input force to nth neuron.
From Eqs. (2), (3), and (4), one can obtain the state equations,
i.e., differential equations of neuron dynamics, as

τn
dûn(t)

dt
+ ûn(t)

=
N∑

m=1

Gnm(ωo)γm tanh(αm|ûm(t)|) ûm(t)

|ûm(t)|

+Gin
n (ωo)f̂in + βn (n = 1, . . . , N) (5)

Similar to the previous study, the bias β is supposed to be
trained in the training phase such that

βn = −Gin
n (ωo)f̂in (6)

This is easily done by setting the output gain γn to zero, and
adjusting βn such that the state variable ûn vanishes.

2.2. Bifurcation analysis for multiple-neuron network on
single-mode host structure

Let us first assume that the host structure is operated in a spe-
cific single mode, and all the neurons have the same time con-
stant τ . Then, the state variables of all the neurons can be
represented in the one-dimensional subspace that the mode
shape of the target mode spans as

ûn(t) = φnξ̂(t) (7)

where φn is the mode shapes of the target mode at the location
of the nth neuron, and ξ̂ is the reduced state variable in the
modal coordinate. Furthermore, assuming that the neuron’s
input is the displacement, or its spatial derivatives, the FRF is
specified in the form of

Gnm = λ(ωo)φnφm (8)

where

λ(ω) =
1

mk

−ω2 + 2iζkωkω + ωk
2

(9)

where ωk, ζk, and mk are the natural frequency, damping
ratio, and modal mass of the target mode, respectively.

Substituting Eqs. (6), (7) and (8) into Eq. (5) leads to a

reduced-order state equation in the modal coordinate

τ
dξ̂(t)

dt
+ ξ̂(t)

=λ(ωo)
N∑

n=1

γn|φn| tanh(αn|φn||ξ̂(t)|)
ξ̂(t)

|ξ̂(t)|
(10)

This equation gives an autonomous system that rules the be-
havior of all neurons in the network.

In order to understand the asymptotic behavior of this net-
work, the autonomous system Eq. (10) is analyzed in terms
of its equilibria and stability. First, the state variable ξ̂ is rep-
resented in a polar form as

ξ̂(t) = a(t)eiθ(t) (11)

Substituting it into Eq. (10) followed by multiplying e−iθ(t)

leads to

τ

(
da(t)

dt
+ ia(t)

dθ(t)

dt

)
+ a(t) = λ(ωo)ψ(a(t)) (12)

where ψ is the amplitude activation function in the modal co-
ordinate defined as

ψ(a) =
N∑

n=1

γn|φn| tanh(α|φn|a) (13)

Finally, dividing above equation into real and imaginary parts
gives

τ
da(t)

dt
+ a(t) = Re [λ(ωo)]ψ(a(t)) (14)

τ
dθ(t)

dt
=

1

a(t)
Im [λ(ωo)]ψ(a(t)) (15)

The above system of equations is a straightforward extension
of the equations for the single-neuron configuration (Masuda,
Sakai, & Takashima, 2023). Similarly, Eq. (14) is a real-
valued scalar homogeneous differential equation of ampli-
tude, and Eq. (15) can be solved by substituting the solution
of Eq. (14) and integrating it.

The modal activation function ψ is a wighted sum of the
activation functions (tanh) of all neurons, thus, it inherits
the properties of tanh, i.e., monotonically increasing start-
ing from the origin, convex upward, and saturated. These
properties allows the similar bifurcation analysis of Eq. (14),
which concludes that the network has two operation modes
with different attractors:

when Re [λ(ωo)]ψ′(0) > 1,
it has a limit cycle ξ̂(t) = acei(ωct+θ0) as its attractor such
that

ac = Re [λ(ωo)]ψ(ac) (16)

ωc =
1

τac
Im [λ(ωo)]ψ(ac) (17)

3

Connections between N neurons

Overall dynamics: autonomous system with nonlinear term

These terms can be eliminated by training the bias

FRF between neurons

非線形微分方程式で記述
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FRFs at the operating frequency:

ŵn(t) =
N∑

m=1

Gnm(ωo)f̂m(t) +Gin
n (ωo)f̂in (4)

where Gnm(ω) is the FRF from the mth neuron to nth neu-
ron, and Gin

n (ω) is the FRF from the input force to nth neuron.
From Eqs. (2), (3), and (4), one can obtain the state equations,
i.e., differential equations of neuron dynamics, as

τn
dûn(t)

dt
+ ûn(t)

=
N∑

m=1

Gnm(ωo)γm tanh(αm|ûm(t)|) ûm(t)

|ûm(t)|

+Gin
n (ωo)f̂in + βn (n = 1, . . . , N) (5)

Similar to the previous study, the bias β is supposed to be
trained in the training phase such that

βn = −Gin
n (ωo)f̂in (6)

This is easily done by setting the output gain γn to zero, and
adjusting βn such that the state variable ûn vanishes.

2.2. Bifurcation analysis for multiple-neuron network on
single-mode host structure

Let us first assume that the host structure is operated in a spe-
cific single mode, and all the neurons have the same time con-
stant τ . Then, the state variables of all the neurons can be
represented in the one-dimensional subspace that the mode
shape of the target mode spans as

ûn(t) = φnξ̂(t) (7)

where φn is the mode shapes of the target mode at the location
of the nth neuron, and ξ̂ is the reduced state variable in the
modal coordinate. Furthermore, assuming that the neuron’s
input is the displacement, or its spatial derivatives, the FRF is
specified in the form of

Gnm = λ(ωo)φnφm (8)

where

λ(ω) =
1

mk

−ω2 + 2iζkωkω + ωk
2

(9)

where ωk, ζk, and mk are the natural frequency, damping
ratio, and modal mass of the target mode, respectively.

Substituting Eqs. (6), (7) and (8) into Eq. (5) leads to a

reduced-order state equation in the modal coordinate

τ
dξ̂(t)

dt
+ ξ̂(t)

=λ(ωo)
N∑

n=1

γn|φn| tanh(αn|φn||ξ̂(t)|)
ξ̂(t)

|ξ̂(t)|
(10)

This equation gives an autonomous system that rules the be-
havior of all neurons in the network.

In order to understand the asymptotic behavior of this net-
work, the autonomous system Eq. (10) is analyzed in terms
of its equilibria and stability. First, the state variable ξ̂ is rep-
resented in a polar form as

ξ̂(t) = a(t)eiθ(t) (11)

Substituting it into Eq. (10) followed by multiplying e−iθ(t)

leads to

τ

(
da(t)

dt
+ ia(t)

dθ(t)

dt

)
+ a(t) = λ(ωo)ψ(a(t)) (12)

where ψ is the amplitude activation function in the modal co-
ordinate defined as

ψ(a) =
N∑

n=1

γn|φn| tanh(α|φn|a) (13)

Finally, dividing above equation into real and imaginary parts
gives

τ
da(t)

dt
+ a(t) = Re [λ(ωo)]ψ(a(t)) (14)

τ
dθ(t)

dt
=

1

a(t)
Im [λ(ωo)]ψ(a(t)) (15)

The above system of equations is a straightforward extension
of the equations for the single-neuron configuration (Masuda,
Sakai, & Takashima, 2023). Similarly, Eq. (14) is a real-
valued scalar homogeneous differential equation of ampli-
tude, and Eq. (15) can be solved by substituting the solution
of Eq. (14) and integrating it.

The modal activation function ψ is a wighted sum of the
activation functions (tanh) of all neurons, thus, it inherits
the properties of tanh, i.e., monotonically increasing start-
ing from the origin, convex upward, and saturated. These
properties allows the similar bifurcation analysis of Eq. (14),
which concludes that the network has two operation modes
with different attractors:

when Re [λ(ωo)]ψ′(0) > 1,
it has a limit cycle ξ̂(t) = acei(ωct+θ0) as its attractor such
that

ac = Re [λ(ωo)]ψ(ac) (16)

ωc =
1

τac
Im [λ(ωo)]ψ(ac) (17)

3

ODE for amplitude

シンプルな分岐則（ホップ分岐）に帰着
ポイントアトラクタ ↔ リミットサイクル

モードコンプライアンスの実部と調整可能な閾値の大小関係
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Figure 3. Top view of a rectangular plate as the target struc-
ture. All the edges are simply supported.

thus, the response of the structure at the location of the nth
neuron is derived from Eqs. (2), (6) and (7) as

ŵ(t) = (1 + iτωc)acφne
i(ωct+θ0) +Gin(ωo)f̂in (18)

which states that the response of the structure in the time do-
main exhibits a modulation in amplitude and phase;

otherwise,
it has a point attractor at the origin, thus, the response

of the structure at the location of the neuron is

ŵ(t) = Gin(ωo)f̂in (19)

which means that the response of the structure in the time
domain is steady-state, and the neuron ceases its output.

This is a Hopf bifurcation of the complex amplitude. In other
words, this changes the response in the time domain from
steady-state to amplitude and phase modulation. The bifur-
cation parameter is Re [λ(ωo)]ψ′(0), which is further calcu-
lated as

Re [λ(ωo)]ψ
′(0)

=Re

[
1

mk

−ω2
o + 2iζkωkωo + ωk

2

]
N∑

n=1

αnγn|φn|2

(20)

Hence, both the global parameters (natural frequency and
modal damping ratio) and local parameters (mode shapes)
govern the bifurcation. This means that the local change of
the mode shapes can affect the global behavior of the net-
work.

Table 1. Values of parameters

Description Symbol Value
Dimensions of plate Lx 1.4

Ly 1
Natural frequency of (2,2) mode ωk 6.04
Modal damping ratio ζk 0.01
Modal mass mk 1
Time constant of neuron τ 10
Input gain αn 2
Output gain γn 1
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Figure 4. (2,2)-mode shape and neuron location.

2.3. Bifurcation-based SHM

The concept of the EWFNN-based SHM is to perform dam-
age detection based on the behavior of the EWFNN built
on the host structure. The core idea is to utilize the bi-
furcation between the limit cycle (modulated response) and
the point attractor (steady-state response) of the network re-
sponse to detect the change of the dynamics of the host struc-
ture caused by damages. The finding described above that the
changes of not only the global modal parameters but also the
local mode shapes can yield the global bifurcation suggests
the potential benefit of the densely deployed multiple-neuron
EWFNN as a damage detector. It can be more sensitive to lo-
cal damages than the single-neuron network (Masuda, Sakai,
& Takashima, 2023), which only has sensitivity to the global
modal parameters.

3. NUMERICAL EXAMPLE

3.1. Target structure

An illustrative numerical example is presented to show the
validity of the presented analysis of the bifurcation of the
network behavior. A simply supported isotropic rectangular
plate depicted in Fig. 3 was presumed as the target structure.
Four neurons and one excitation neuron were deployed at the
locations indicated in the figure. The values of the relevant
parameters are listed in Table 1. Note that all the parameters
are appropriately nondimensionalized.

We assumed that the dynamics of the plate is described by
a single dominant mode (2,2) at the operating frequency and

4

(2,2)-mode shapeSimply-supported thin plate

Parameter values

Excitation neuron
Neuron 2

Neuron 3

Neuron 4

Neuron 1
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Figure 5. Results of numerical experiments for ωo = 0.98ωk.
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Figure 6. Results of numerical experiments for ωo = 0.9ωk.

that the neurons measure the out-of-plane displacement of the
plate as their input. The (2,2)-mode shape is shown with the
location of the neurons in Fig. 4. As indicated in the figure,
the neurons 1, 2, and 3 are located near the antinode of the
(2,2)-mode, whereas the neuron 4 is near the nodal line.

3.2. Results

Numerical experiment was conducted for three different oper-
ating frequencies to verify the bifurcation analysis presented
in the previous section. First, as the training phase, the out-
put gain γ of the neuron was set to zero, and the bias was
trained as described in Eq. (6). Then, the output gain was set
to the prescribed value, and the state variables of the network
were calculated by numerically integrating Eq. (5) by ode45
of MATLAB with randomly set initial values. The displace-
ment responses at the neurons were calculated from Eq. (4).

The results are shown in Figs. 5, 6, and 7 for ωo = 0.98ωk,
0.9ωk, and 1.02ωk. Each of figures shows (a) the loci of the
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Figure 7. Results of numerical experiments for ωo = 1.02ωk.

complex amplitudes of the displacements at the neuron lo-
cation ŵn, in which the colors of the lines are correspond-
ing to the colors of the neurons depicted in Fig. 4, (b) the
shape of the modal activation function ψ(a) with the line of
1/Re [λ(ωo)], and (c) the temporal responses of the displace-
ments at the neuron locations, w1, w2, w3, and w4.

The plots clearly show that the network responses are dras-
tically changed by the small variation of the operating fre-
quency. The network was attracted to modulated responses,
as shown in Fig. 5, because the operating frequency was set
slightly below the natural frequency where the real part of the
λ is greater than the threshold 1/(ψ′(0)). In this case, the
modal activation function has a stable intersection with the
line of 1/Re [λ(ωo)] at a positive value of a, which corre-
sponds to the limit cycle amplitude ac. In contrast, when the
operating frequency moved away from the natural frequency,
the network converged to a steady-state response, as shown
in Figs. 6 and 7, since real part of the λ becomes smaller
than the threshold 1/(ψ′(0)). In these cases, the modal ac-
tivation function has a stable intersection with the line of
1/Re [λ(ωo)] only at the origin, which corresponds to the
point attractor.

4. CONCLUSIONS

In this study, the formulation of EWFNN investigated in the
previous study was extended to multiple-neuron configura-
tion, assuming single-mode operation. The formulation of
the network was presented and the equilibrium analysis was
performed to derive a simple criterion of Hopf bifurcation of
the complex amplitude of the state variables of the neurons
due to the change of the network and structural parameters.
Then, numerical analysis was conducted to examine the va-
lidity of the bifurcation analysis. The findings of the bifurca-
tion analysis suggested the potential benefit of dense deploy-
ment of neurons in EWFNN to perform as a damage detec-
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that the neurons measure the out-of-plane displacement of the
plate as their input. The (2,2)-mode shape is shown with the
location of the neurons in Fig. 4. As indicated in the figure,
the neurons 1, 2, and 3 are located near the antinode of the
(2,2)-mode, whereas the neuron 4 is near the nodal line.

3.2. Results

Numerical experiment was conducted for three different oper-
ating frequencies to verify the bifurcation analysis presented
in the previous section. First, as the training phase, the out-
put gain γ of the neuron was set to zero, and the bias was
trained as described in Eq. (6). Then, the output gain was set
to the prescribed value, and the state variables of the network
were calculated by numerically integrating Eq. (5) by ode45
of MATLAB with randomly set initial values. The displace-
ment responses at the neurons were calculated from Eq. (4).

The results are shown in Figs. 5, 6, and 7 for ωo = 0.98ωk,
0.9ωk, and 1.02ωk. Each of figures shows (a) the loci of the
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complex amplitudes of the displacements at the neuron lo-
cation ŵn, in which the colors of the lines are correspond-
ing to the colors of the neurons depicted in Fig. 4, (b) the
shape of the modal activation function ψ(a) with the line of
1/Re [λ(ωo)], and (c) the temporal responses of the displace-
ments at the neuron locations, w1, w2, w3, and w4.

The plots clearly show that the network responses are dras-
tically changed by the small variation of the operating fre-
quency. The network was attracted to modulated responses,
as shown in Fig. 5, because the operating frequency was set
slightly below the natural frequency where the real part of the
λ is greater than the threshold 1/(ψ′(0)). In this case, the
modal activation function has a stable intersection with the
line of 1/Re [λ(ωo)] at a positive value of a, which corre-
sponds to the limit cycle amplitude ac. In contrast, when the
operating frequency moved away from the natural frequency,
the network converged to a steady-state response, as shown
in Figs. 6 and 7, since real part of the λ becomes smaller
than the threshold 1/(ψ′(0)). In these cases, the modal ac-
tivation function has a stable intersection with the line of
1/Re [λ(ωo)] only at the origin, which corresponds to the
point attractor.

4. CONCLUSIONS

In this study, the formulation of EWFNN investigated in the
previous study was extended to multiple-neuron configura-
tion, assuming single-mode operation. The formulation of
the network was presented and the equilibrium analysis was
performed to derive a simple criterion of Hopf bifurcation of
the complex amplitude of the state variables of the neurons
due to the change of the network and structural parameters.
Then, numerical analysis was conducted to examine the va-
lidity of the bifurcation analysis. The findings of the bifurca-
tion analysis suggested the potential benefit of dense deploy-
ment of neurons in EWFNN to perform as a damage detec-
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固有振動数の変化をアトラクタ変化として検出

ポイントアトラクタに吸引リミットサイクルに吸引
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